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THEORETTCAL DETERMINATION OF A REFERENCE ENTHALPY
FOR THE LAMINAR BOUNDARY LAYER OF THE FLAT PLATE.
PRANDTL, NUMBER EFFECT

R. Michel and G. Kretzschmar

r %74 M ABSTRACT

A theoretical determination of the reference enthalpy is
suggested for the laminar flat plate boundary layer in compres-
gible flow. Crocco's equation is used in evaluating the shear
stress within the boundary layer; an approximate solution cor-
responding to pu constant is adjusted to satisfy the integral
momentum equation.

The reference enthalpy thus depends upon the conditions at
the wall and in the external flow and upon coefficients which
are functions of Prandtl number.
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Cfi : friction coefficient for incompressible fluids
- “§y . .
Cn e =y ? coefficient of heat flux
Cp ¢ specific heat at constant pressure
F o= Zlu(ﬁhnr", dimensionless friction
Petta/2 \pouox
Fyo0 dimensionless friction for incompressible fluids
h : enthalpy
he : enthalpy of friction
hi : enthalpy at rest
i

= %2, dimensionless enthalpy
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Mach number
Prandtl number

g Reynolds number

he -he
= recovery factor
h:Le'he

Cn | .
5—757 similarity ratio
f

temperature
friction temperature

longitudinal component of the velocity
EL, dimensionless velocity
Ue

abscissa and ordinate of a cartesian system of axes
thickness of the boundary layer

oy
Ef'iﬂi(1__.ﬁ)dy, momentum thickness
FJ 0 Palls Uy,

5%«vﬁ} dimensionless ordinate

functions of w and T involved in the enthalpy and velocity
relation

coefficient of thermal conductivity :
viscosity coefficilent ;
mass per unit volume ’

[ QE, friction

ay
oT
-kgy, heat flux
subscript referring to the outer boundary of the layer 1&

subscript referring to the value at the skin
superscript referring to the value at the reference temperature

I. Introduction

‘ Exact mathematical solutions to the laminar boundary layer equations
exist for the flat plate and compressible fluids., Their order of



_approximation depends only upon the assumptions made concerning the phys-
‘ical properties of the gas. For example the solution of Crocco and

Van Driest, which makes use of Sutherland's viscosity and temperature
relation, and which involves a constant Prandtl number different from
one, must lead to very accurate results within very wide ranges of Mach
numbers and skin temperatures.

The concept of reference enthalpy plays an essential role in yield-
ing simple equations for the essential characteristics of the boundary
layer, and initially for the skin friction. This concept was originally
introduced in an empirical way, by adjusting the coefficients involved
in the reference enthalpy, to yield the best possible agreement with the
selected solution.

Certain attempts at less empirical determinations were made.
Monaghan proposed, for example, to take for the reference enthalpy an
average value of the enthalpy with respect to the velocity within the
boundary layer. ;

It must be noted, however, that the reference enthalpy can only be:
defined in terms of the proposed goal. If the property investigated is
skin friction, it seems logical to attempt to determine the reference en-
thalpy starting from an equation describing the behavior of the friction
inside the boundary layer. On this ildea is based the determination of
the reference enthalpy which is proposed in this article. The equation
employed will be that of Crocco, in order to describe the behavior of the
friction with respect to the velocity within the boundary layer. An ap-
proximate solution to this equation will lead, for the friction coeffi-
cient, to the usual form which is offered by the concept of reference
enthalpy. The reference enthalpy will itself be determined by demanding
for the solution an additional condition, namely: that it must satisfy .
the general momentum equation. E

IT. The Concept of Reference Enthalpy

The application of the reference enthalpy concept to the skin fric-
tion consists in extending the relation which gives, for incompressible
fluids, the coefficient of local friction as a function of the Reynolds
number of the abscissa. FEquation (1) can be employed in incompressible
fluids provided we take the values p¥ and w¥ which correspond to a cer-
tain reference enthalpy h¥ to be -selected from certain flow parameters
of the boundary layer under consideration.

First let us examine the example of the laminar boundary layer for
the flat plate. For the incompressible fluids the friction equation was

t, 0,664
pudf2 — (pu,uw/w)ti?

B



‘fof the compressible case we have:
' “x, 7 0,664
prullz  (p*uemfut)lt

The friction coefficient Cy however 1s obtained by having 7. in

P
terms of peu§/2 and we seek to express it as a function of the Reynolds

PLUX
. e“e
number obtained from the exterior values, R = e

The concept of reference enthalpy gives in this way

o/ |
Cﬂ > Pebls (l)

for the ratio of the friction coefficient to the coefficient Cp; in theé

compressible case, for the same value of the Reynolds number,

The problem then consists in determining the value of that product
p¥u¥, The reference enthalpy is simply the enthalpy h¥ corresponding to
this product.

The interpretation of theoretical or experimental results has led
to various relations for the reference enthalpy. This interpretation has
often been made in cases where the specific heat could be taken as con-
stant, and a reference temperature in this case was used instead of an
enthalpy.

Generally speaking, the three parameters which are used for deter-
mining the reference enthalpy are:

1. the skin enthalpy
2. the enthalpy hy, or the enthalpy of rest h;e of the outer flow

3. the enthalpy of friction or enthalpy of the athermanous skin.

It is known that it can be related to h, and h;. by means of
the recovery factor r;

hf - he =T (hie - he).
From Eckert (Ref. 1) the reference enthalpy is given by the relation

h* - he = 0.50 (hy - he) + 0.22 (hp - he); (22):



;Tﬁis formula was first proposed for the laminar boundary layer. Accdfa;
‘ing to that author, however, it can also give good results for the turbu—
lent case.

Monaghan (Ref. 2) proposed for the reference enthalpy a value of the
enthalpy averaged over the velocity, from an approximation to the rela-
tion that can exist in the boundary layer between the enthalpy and the
velocity. This relation is almost the same for the laminar boundary
layer as for the turbulent boundary layer; the same reference enthalpy
is obbtained for both cases:

h¥* - h, = 0.5k4 (hp - hy) + 0.16 (b - h). (2p)

Sommer and Short (Ref. 3) found from their experiments with a turbu-
lent boundary layer a relation which can be put into the preceding form
and which is written as follows, assuming a recovery factor of 0.9:

h¥ - he = 0.45 (by - he) + 0.195 (he - he). (2c}

We see that in these relations the reference enthalpy results from '
a linear combination of the enthalpy deviation (hp - he) and the enthalpy

deviation (he - h.). Note that when hp = hp (athermanous skin), (h¥

- he) becomes proportional to (he - h.), the proportionslity coefficient

being 0.72 from Eckert, 0.70 from Monaghan, 0.65 from Sommer and Short.
These are small differences that lead to close results, A comparison [2
with exact theories seems to slightly favor the relation of Monaghan.

III. Review of the Results of the Crocco-Van Driest Solution

Among the theoretical solutions available for the flat plate in com-
pressible fluids that given by Crocco is one of the most exact. It em-
ploys a constant Prandtl number, and the energy equation is written down
for the enthalpy. Numerical solutions have been calculated by Crocco
(Ref. L4) and then by Van Driest (Ref. 5) with the help of Sutherland's
law of viscosity vs temperature. It can be applied to the case where the
wall temperature is constant.

We know that Crocco's transformation consists in writing local equa-
tions for the momentum and the energy, taking x and u, instead of x and
v, as the independent variables, and taking the friction T between the
streams, and the enthalpy h as the dependent variables. An assumed af-
finity transformation permits us to go from equations with partial deriv-
atives to simple differential equations with the velocity u being the

\




<véfiable. Tn a nondimensional form we have the transformed variables
‘which are involved in Crocco's equation:

T (p,u,‘;c)ua
~ e\ e |

o

i

fle &=
7

y

The local equations for the momentum and the energy are written,
respectively:

. FP 42 g‘—:;;o; t» (3)
41— %‘i’ + :r-l'f" =03 (k)

the derivative being taken with respect to the variable w.

Integrating this system of equations leads essentially to the fol-
lowing results:

1. From Equation (3) we obtain the distribution of the internal
friction within the boundary layer as a function of the velocity. An
essential characteristic is of course the value of F at w = 0, in other
words at the skin:

F!’ = Cl '\/J'Tw
From the distribution of the friction as a function of w we then de-
duce the distribution of the velocity as a function of y, observing that
- 3u

T = & 35. In this way we obtain for the usual variable

4

Y N [
n—x\/m,f-2fo 7 dw.

The distributions of friction in the boundary layer have been calcu-
lated by Crocco and Van Driest, for a wide range of Mach numbers and skin
temperatures. The zresults which were obtained show that when the friction

is divided by its wvalue at the skin the distribution £L (w) is little af-

fected by the compressibility and remains close to that of the incompres-
‘sible fluid. This property is used in the integration of the energy ;



.ééﬁation, where Van Driest retains the friction distribution given by
‘Blasius's solution.

2. The function of the enthalpy versus velocity within the boundary
layer is obtained from equation (4). The following relation results:
2911

h = by - (b - he) 67 + ul (5a)

II

where GI and 6 are functions of w = éi calculated and given in refer~

e
ence 5 for different values of the Prandtl number. It is useful in what

2
u
follows to use the enthalpy of friction hy = hy + r?§ in the enthalpy vs

velocity relation. The relation becomes:

h - hy = (hp - h) (1 - ol) + (he - hy) 22?1- (5b§

Finally, the enthalpy vs velocity relation gives (from the slope at
the skin) the two following essential parameters:

1., +the recovery factor r
2. the analogy factor s, which is the ratio of the heat flux to

C
. ot - . h
the friction coefficient at the skin, s = EE7§

These two factors depend only on the Prandtl number. They are givén
in Table 1, and they obey fairly closely the relations:

1/25 s = -2/3

r =T

IV. Approximate Solution to Crocco's Equation. Corresponding
Reference Enthalpy

An approximate solution to Crocco's equation for the friction can

be sought by taking for thgﬂratioigﬁﬂ a constant average value, to be

atve

chosen somewhere within the boundary layer.

First assume that p is proportional to T. From the equation of

‘state u 1s then inversely proportional to p and LI

oble

P



‘Cbhsequently we again find the form of the equation for incompressible |
‘fluids:

F,FY + 2w = 0. )

This corresponds to Blasius's equation, whose solution is well known and
gives for the skin friction

Fip = Cpy Ry = 0.66k.

4 “.**'
We now take for &% an average valueé%{% = C. We have

elt™e ;. Vet

FF"' + 2 Cw = O

The solution to this equation is immediately deduced from that of
incompressible fluids through the relation

or taking the values at the skin,

€ Vm - c,, «/sc"’,, \/G = 0,664 ,\/P_ﬁf

Pelke

We again find the relat; (1) exactly, by using the concept of refer- /6
ence enthalpy. This concept can therefore be considered as correspond-
ing to an approximate solution to the flat plate boundary layer equa-
tions, with pwu being constant. It remains now to determine how the
average values p*u* must be chosen.

In order to arrive at this we shall demand that the solution obey
not only the approximate local equation, but also the overall equation
for the momentum (Karman's equation)

Gy = 2 @”, where & = 8-——-‘(1 — -—) dy;
! i dx 0 Pylly ’

We shall first write this equation with the new variables. Observing

that:
dy =‘ 2 .-—“2— & E/ﬁ dw
V_ PollsT F

the momentum thickness i1s written

88=2'\/ PPW(l““‘w)dW
Pouax o Pol"a




Téking the derivative of ég with respect to x, Karman's equation takes |
the form: :

C;\/ﬂ ==2.f o Eililﬂ?dw
0 Pells

Now replace Cg ]RX and F by the results of the solution for constant pp

, o
F=F a4/, g \/a = 0,664 _’3_‘_;
Psl"a o Pal"s

Karman's equation gives:

et 1 (Tenw(t—w (63)
e— P Sou— A dW a.
Pa!"'c 0’332 0 Pelly Fy

This equation determines how the average value %Hi of the approx1—

obte

mate solution with constant pu must. be chosen. The friction distribution

Fi of the incompressible fluid is a known function of w = éL and it is

e
given by Blasius's equation. It is useful to verify that Blasius's solu-
tion for the incompressible fluid gives exactly:

fﬂ:‘i”l dw = ogég.
o Fd 3 .

The previous relation can be put into the form

ptur

ot 1T 0332f (Po!"o 1)&%‘%&@ (60)

The reference enthalpy has the value h¥ of the enthalpy which cor-
responds to the preceding value of p*u¥, It would be desirable to add
to (6b) a relation as exact as possible between the viscosity and the
temperature, e.g., Sutherland's law. It is obvious however that
Sutherland's law would lead (for the reference enthalpy) to an expres-
sion much more complicated than the linear relations for the parameters
hp, he, hy presented in Section II.

A linear enthalpy can only be obtained if a linear approximation is
chosen for the changes of the product pp with the enthalpy. This is the

assumption we shall now make, and we shall take that Lo ] i propor-

i Pe!"a

tional to %L ~ 1 in order to retrieve pu = papue at h = he. -The relation
e H
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“(6b) becomes: T i

* ___ 1 M 1 —w)
h .7,,h' o 63_3—2 fo (b = h) ?‘T‘ dw. (7)

Now eqﬁation (5b), giving the changes of h with w, must be used to obtain
the reference enthalpy. Integrating, we obtain:

by A (hy— k) + B (hy— hy); (8)
with
: 1 1 41— ).
;A 0332f 1_G]E)W(F‘ i (%)
16 1 —w)
B = o [, 5 e (90)

The form which is obtained here is identical with that of the emplrlcal
relations of Eckert and Monaghan.

We shall now recall that Fy;(w) is the friction distribution for the

incompressible fluid as given by the solution of Blasius, and that GI

IT

and 6 are functions of w = %L calculated and given by Van Driest for

e

different values of the Prandtl number. The coefficients in the relation
for the reference enthalpy depend therefore on the Prandtl number.

The integration corresponding to the formulas of (9) lead to values
of A and B which are listed in Table 1 and are shown in the curves of
Figure 1. For example we have, for v = 0,725:

A = 0.h47k; B = 0.178;

Table 1. <Coefficients A and B of the relation for the reference '[Z

enthalpy, and recovery and analogy factors as functions of
Prandtl number

g 0,5 0.725 0,75 1 1,25 1.50 2
A 0,527 0.474 0.469 0428 | 0,396 0,370 0.330
|
i B 0,170 0.178 0,479 | 0484 0.187 0.188 | . 0.188.
|
‘ r 0,704 0,851 0.865 1,000 1.118 1,224 1,413
}' 8 1,562 1,230 1,204 1,000 0.865 0.768 0,636
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Figure 1. Coefficients of the reference enthalpy as a function
of Prandtl aumber
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Figure 2. Comparison of the results obtained with the concept

of reference enthalpy with the exact results of Crocco and
Van Driest

T = 0.75 v= 1.4 T, = 218° k
Crocco ~ Van Driest N
———————— The reference enthalpy as proposed
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These coefficients are sufficiently close to those previously obtained
empirically.

To determine the accuracy of the results obtained with the preced-
ing method the coefficient of local friction for the flat plate with a
leminar boundary layer has been calculated from formula (1) using
Sutherland's relation for the relation between the viscosity and the
temperature.

The reference enthalpy has been determined by means of formula (8),
with the coefficients A and B taken for the Prandtl number equal to 0.75,
a value which corresponds to the results of the exact solution (Ref. 5).
A comparison of Figure 2 for different values of the skin temperature
shows that the friction coefficients are very close to those given by
the solution of Crocco and Van Driest.

Conclusions

It is possible to define a reference enthalpy for the laminar bound—
ary layer of the flat plate and to determine numerically the coefficients
of the law which relates this enthalpy with the parameters hp, hg, hp.

This can be done from a solution to Crocco's equation with pp constant,
by using the overall momentum equatiouns.

Since the determination of the coefficients involve a relation be-
tween the enthalpy and the velocity which depends on the Prandtl number,
the reference enthalpy depends also on the Prandtl number, In this way
we have avallable, together with the recovery factor and the analogy fac-
tor, a set of results of very wide range which must be capable of pre- -
dicting the skin friction for gases or mixtures of gases having different
physical characteristics.
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